Skip to main content

Offroad Wheelchair Update 1 - To Retrofit or Reinvent?

Recently, we at Freeside Atlanta teamed up with the Alchemical Arts Alliance and My Inventor Club to design and build an Offroad Wheelchair so that our friend Robin can get around their events. Together, we've raised about $2,000 for the project.

The design phase is usually the most difficult part of the projects, and it is often the most expensive place to make a mistake. Committing the resources to a poorly-designed project can cause the entire thing to be wasted, so we designed the Offroad Wheelchair project very carefully.

We started with the constraints – We need ease of maneuverability, an ability to overcome obstacles and take fairly steep inclines, longevity to make it through events up to a week long, and recoverability in case it gets stuck. Also, biggest two constraints – Budget (~$2000) and time to prototype (2 months)

From that, we landed on 3 design options –
1 – Electric motors with onboard generator for periodic battery charge
2 – Modifying an existing lawnmower or outdoor vehicle with hydraulic controls and automation
3 – Modifying a zero-turn lawnmower to suit our purpose

After weighing the options, we chose option one for its low noise and high efficiency. Next step - simulate the design. I used the website Study Physics to figure out the torque requirement to pull a simulated wheelchair + passenger up a given slope. Then I simulated it in a spreadsheet starting with the worst-case scenario so I could play with the numbers. The inputs are in orange and the rest are calculations.

In other words, the force required to take a vehicle up a 15 degree slope is a bit more than half of the force required to lift it all the way off the ground. To find the torque requirement, the force needs to be distributed around the wheel, since the wheel radius affects the leverage exerted by the motor.

Therefore, the minimum torque of the motors is about 200 pound feet. Is that feasible for an electric motor? Let’s look at the best motor example I could find - 

This means that the system required two very powerful electric motors, running near peak torque continuously, and geared down 60x. They exist, but they are about $600 each and don’t usually match each other’s output exactly. Plus, the motor controllers are $200-$400 each! That means that this project is neither feasible nor practical, as the entire budget could be spent on 2 motors with their respective transmissions and controllers. It won’t work. But, this is why we simulate. It’s time to drop back and try again.

The hydraulic modification of an existing vehicle seems interesting, but also time-consuming. Plus, it wouldn’t be able to pivot in place like the other two design options, which is important to delivering the rider to exactly their target. Not to mention that the drive of the wheels will probably be locked together, so there is nothing stopping the thing from sliding down a slope. It also requires the modification of a ~$1000 platform with up to $800 in hydraulics and most options aren’t configured for somebody to easily get into from a wheelchair.

Then, Shane from My Inventor Club sent me an email about a zero-turn mower that was available in our price range. Zero-turn mowers use hydrostatic transmissions to convert the high-rpm, low-torque energy from an engine into low-speed, high-torque power with hydraulics. The mower we chose is a Grasshopper 725k. The actual torque isn’t listed in any of the data sheets, but the horsepower (25) and wheel diameter (22in) are. So now we just need to find the torque and update our simulation to see if it will work.
If we know how to find torque then we just need to find the rpm at the wheels at the top speed, discount it by about 30% for conversion losses, and that will be near our actual torque.
First, get the top speed to feet per minute – 

Then, turn that to rpm using (the diameter of the tire) * (pi) to get the ground it covers per revolution.

Finally, you can do the torque conversion – 
 The zero-turn mower is 800lbs, so it is much heavier. The torque required to haul it up a 15 degree slope is 530 pound-feet, so it might be able to crawl along if it can keep traction. However, rolling over would be a concern at that angle anyway. Therefore, the zero-turn is feasible and reasonably meets the requirements of the project.

We can look into supplementing the power of the motors with a winch if the vehicle gets stuck somewhere that the torque/traction can’t overcome and reduce engine noise, but we're in the ballpark now. So, we’ve settled on a design – a retrofit of a zero-turn mower with a winch. It will be faster and more cost-effective to retrofit a used device that has been engineered to a similar task than to design and build something new from scratch. However, this platform could serve as a prototype for some future design, so we can work out the issues through iterative prototyping.

Until then, we’ll do the most effective and cost-effective Offroad Wheelchair that our constraints allow and document it so others can duplicate and improve the idea.

Check in on the Offroad Wheelchair page for links and info, including the simulation spreadsheet that I used (you get to point out my mistakes!) and the first video of the mower that we selected.

Comments

Popular posts from this blog

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and ...

Onboard Firmware of the Human Brain

Freesiders are continually tinkering with robotics and other such machinery .  Many of these embedded processors and firmware are becoming open source and every-more diversified in the wake of the modern Maker movement . One notable boost to the hackerspace arsenal is the Arduino (an like platforms).  This offers designers an incredible power to devise not just individual devices but even the emergence of complex, integrated systems . This evolutionary pace of modern technological systems may be significantly faster the biologic system development, but there may be a few well learned tricks yet to be mastered.  It seems that studying how nature has managed to solve many development challenges will aid in designing robotics, where efficiently counts just as much. One  challenge, that is particularly interesting, is data processing.  Artificial intelligence is labored with processing data and producing a meaningful and useful output.  When consid...

Freesiders Hackers Collaborate in Medical / Surgical Research

Published in the May issue of the Journal of Foot and Ankle Surgery : " A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction ." This collaboration of specialties represents an undertaking by members of Freeside Atlanta , Southern Arizona Limb Salvage Alliance , and The Podiatry Institute .  Charcot foot reconstruction remains on of the most challenging procedures in foot and ankle surgery.  These procedures are often lengthy procedures which can be riddled with complications. With the help of Freeside Atlanta Members, institutional researchers used open source Osirix Image viewer and 3D Software such as Newtek's Lightwave or Blender to create simulated surgical reductions as well as 3D printed templates.  Freeside Atlanta members assisted in providing 3D printing solutions and know-how to the project. Experimental test prints were done on a M...