Skip to main content

"Making lemonade with lemons" or "Reworking your bad PCBs"

I've been working on a large project for a few months now. It's a DC power distribution unit, and as you can imagine it has need for relays. I've got the thing setup to accept cards to can perform many uses both input and output. One of the many cards I've designed for this system (dual low-side switching relay, 5V, 12V, audio sensor etc..) is a dual high-speed 12V solid state relay card.

Rendering of PDU and fresh pile of PCBs from Circuitmart
This is a photo of the relay on a breadboard.
 single channel of dual high-speed 12V solid state relay on breadboard
This is the card from both sides. The "empty" space is used for thick and wide traces to carry current. These will be built with 6oz copper and can source 23A @ 330W in theory. I've only pushed them to 100W so far but they showed no meaningful rise in temperature so I think I am on the right track. By the numbers, they are right where they should be.
Because these cards are small and parts count it large (4 diodes, 6 transistors, a driver IC, 7 resistors, 1 tant cap) I sourced  ICs with the configs I needed inside of them pre-configured. You would be amazed what you can find at Digikey if you look hard enough. Anyway, I'd never used these ICs before so I was required to design the footprints for them and lay them all out and what not. Long story short (too late), I read the datasheet wrong for one of them and got some pins confused. I didn't notice this until I had it all built up and my beautiful square wave looked like this.


Not so square... :(
I began going through everything and I found the problem, but what to do? Well, run new wires of course!
I didn't have to do any drilling because I happened to have vias available so I just needed to cut some traces and thread some wire. I used an old length of stranded telephone wire. After stripping the outer shield, I removed one of the four insulated wires inside and stripped it down to its constituent 8 strands. I used two strands (twisted) for the short trace and one strand of the longer one. In order to raise the single strand's current capacity a bit, I wet the entire length of the strand with solder. This also stiffens it so it wont bend so easy. 

My square waves have returned to me!

Comments

Popular posts from this blog

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and

Onboard Firmware of the Human Brain

Freesiders are continually tinkering with robotics and other such machinery .  Many of these embedded processors and firmware are becoming open source and every-more diversified in the wake of the modern Maker movement . One notable boost to the hackerspace arsenal is the Arduino (an like platforms).  This offers designers an incredible power to devise not just individual devices but even the emergence of complex, integrated systems . This evolutionary pace of modern technological systems may be significantly faster the biologic system development, but there may be a few well learned tricks yet to be mastered.  It seems that studying how nature has managed to solve many development challenges will aid in designing robotics, where efficiently counts just as much. One  challenge, that is particularly interesting, is data processing.  Artificial intelligence is labored with processing data and producing a meaningful and useful output.  When considering the increase in sensory

Freesiders Hackers Collaborate in Medical / Surgical Research

Published in the May issue of the Journal of Foot and Ankle Surgery : " A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction ." This collaboration of specialties represents an undertaking by members of Freeside Atlanta , Southern Arizona Limb Salvage Alliance , and The Podiatry Institute .  Charcot foot reconstruction remains on of the most challenging procedures in foot and ankle surgery.  These procedures are often lengthy procedures which can be riddled with complications. With the help of Freeside Atlanta Members, institutional researchers used open source Osirix Image viewer and 3D Software such as Newtek's Lightwave or Blender to create simulated surgical reductions as well as 3D printed templates.  Freeside Atlanta members assisted in providing 3D printing solutions and know-how to the project. Experimental test prints were done on a M