What is Freeside?

Freeside is a Georgia nonprofit corporation, organized to develop a community of coders, makers, artists, and researchers in order to promote collaboration and community outreach. Learn more »

Manual Pick and Place project

I built a pick and place machine so I could build up my Motobrain project easier. I used MDF for the platforms. 12mm rail and linear bearings for the Y and Z axis bearings. THK linear motion guide for the X axis. The Z axis is a piece of carbon fiber tubing attached to a piece of laser cut acrylic. The nipples on the tube are 3D printed. 
The laser cutting was done by OSHStencils.com. The bearings were purchased at Amazon. The 3D printing was done by approto.com.





Lathon 3D Printer

Everyone seems to either want, have or use a 3D printer now a days. I bought my first printer kit in 2012 and I quickly noticed I wanted a one with more capabilities but since all of the high performance models were so expensive I designed my own. Eventually I designed a $4,000 printer that I could sell for $1,400 on KICKSTARTER.



There were a few things that I wanted the printer to have: two nozzles, Bowden extrusion, enclosed build area, and a moving xy gantry. 


The two nozzles seems like an obvious choice for anyone who has printed before simply because it allows you to create way more interesting prints than you could otherwise. For example dissolvable support, multiple colors and multiple materials (which is pretty cool). I did notice on other dual nozzle printers, however, that having two big stepper motors created a massive moving mass so if I wanted any sort of respectable speed I was going to have to go Bowden style.




Another pet peeve I have is a moving y-axis. There are big debates on the RepRap IRC and even in the forums about what is better for the print, a moving Y or Z. I will stand firm on the fact that moving your print rapidly back and forth is a ridiculous idea. It definitely looks cool and makes life easier in some regards, but having a variable moving mass that is semi-molten does not seem like a good idea…

Now that I knew what I wanted to do, I starting creating a CAD model of the overall design of the printer. This wasn't too difficult just time consuming. I used V-Slot for my frame and thankfully they have Sketchup models that anyone can download so it gave me a good starting point. 

 Once I started building the frame it became quickly apparent that extrusions require some effort to get them in tight tolerances for a square frame. This was the process that was recommended by Paul F.

How To Cut 80/20 Extrusions (within 0.002”):

1.      Cut the rough dimension with a band saw
2.      Make square first cut on each side using the mill
3.      Bolt an endstop for the extrusion at the required length to the mill
4.      Cut the first piece. Now that you have an endstop at the length of your first piece all of the subsequent pieces should be the exact (or close) length
5.      Take your second piece make a first pass then flip it butt it up against the endstop and then cut the excess with the mill.

Super square frame on a flat sheet of glass



With my frame done the next step was to create the x and y axis. This was a little bit difficult because I did not just want to copy existing printers. I don’t particularly like the Ultimaker’s X/Y set up even though it does produce great results. I wanted to be a little more creative so I decided I was going to use my frame as the rails for my Y axis. Since I had V-slot already I decided to use it for my X-axis. The details were a little weird to work out, but I think it turned out nicely.
 Building the Z-axis was a little bit more difficult because the print bed was so large and I was concerned about the print bed bending as a cantilever beam. I eventually settled on a design using a tri-point mounting system with V-Rails. For the production model, however, I will change the design to something with less flex. For a production model I would focus on making the whole z-axis assembly of only 2 or 3 pieces to minimize play between the interfaces. After using the printer for several months I think a 4 point mounting system is a better choice because with cyclic heating and cooling the print bed appears to sag in the corners where it isn't supported.
Laser engraved logo on the side wall. Fun Fact: all the radii in
 this design are different ratios to pi
 With the basic mechanics completed it was time to add the print bed, nozzles and enclose the printer. The print bed you will notice is actually white plastic and not glass. This plastic is a plastic from GE called Ultem 2300 and I thank the delta printer google groups because they were definitely helpful in brainstorming ideas for a new print surface. Unfortunately nobody really sells this plastic in small sizes so in small quantities it is really expensive. However, it is an amazing print surface so far I can say that it is great for printing PLA, ABS, HIPS, Carbon Fiber, NinjaFlex and LayWood filament. Nylon really should be printed on Garolite simply because it is impossible to remove from Ultem (I may have destroyed a couple prints proving this).


Enclosing the printer was actually pretty interesting because I got to work with a laser cutter. I laser cut most of the parts based off of my CAD but I ran into trouble when making the top cover. The Bowden tube requires a large amount of room so that it doesn’t break the filament or create too much friction so I need a tall top cover. Initially I made a square box which was pretty ugly, so I figured it needed to round the edges. My first attempt was to learn how to bend acrylic and that didn’t turn out so well….
I spent a day trying to get the acrylic to bend at a 90 degree with a 4” radius. Unfortunately I failed pretty hard but that is what Makerspaces are for, failing and learning!

I did some digging and figured that the best way would be to make the bend out of acrylic a laser cut living hinge and I think it turned out pretty well.


The last part and probably the most interesting was the extruder. I needed an extruder that fit the E3D DMfit connectors and I really wanted it to only have one bolt for ease of use. Actually, the first one I made was very similar to the makerbot extruder, without a tensioning screw, but because I am printing in so many different materials it didn’t work since each material needs a different amount of idler tension. It took around 4 different prototypes until I finally created a mechanism that works.
Overall I think the printer turnout splendidly and it makes some really great prints too. Check out the time lapse of a massive D20 below. There are also many example prints on www.lathon.net and the kickstarter . I really enjoyed this project and I hope I can make LATHON’s for other Makers and engineers because, for us, a 3D printer is just as important as a hammer.





Thermal imaging macro photography on a budget (sort of)

I purchased one of the new FLIR E4 thermal imaging cameras (TIC) a couple weeks back because I am working on a new project called Motobrain. It is an automotive power distribution unit with a nominal current capacity of 100A. For those not in the know, 100A is a TON of current! Because this project is designed to move so much current and will be small I need to understand its thermal characteristics very well. To that end I've been operating the device and taking measurements. What I found is that I just could not get the kind of detail I wanted. The reason is that the resolution of the microbolometer in the FLIR E4 is not very high and the lens does not allow you to get very close to the device under test (DUT). The means that you cannot just zoom in after you take a photo either. So, what is a person to do if they want to take a macro photograph with a consumer grade TIC? Go to Amazon.com of course! I purchased a Gallium Arsenide (GaAs) lens meant for a CO² laser for about $40 and waited patiently for it to arrive (via ox cart it would seem, it took weeks) from China. Then I mounted it up in a highly technical lens mount (a paper CD case cut with scissors and stapled together with the lens inside). This provides me a focus distance of about 2 inches which is great for close up work on a PCB. Different lens sizes will provide different focusing distances. I chose a 50.8mm lens.
The lens.
The lens installed on the TIC
The photo on the left is with the new macro lens attached. The photo on the right shows the previous closest in focus image I could make. Both photos are looking at the same part of the PCB. My lens mount is causing some vignetting which I can fix if I want to bother to make a nicer lens mount on the laser cutter. Honestly I am quite satisfied with the current image quality. If it ain't broke, don't fix it.
The photo on the left shows an SO-8 PowerPak MOSFET glowing nice and warm. You can even see its drain and gate pins. The photo on the right is the same image from the same distance without the lens installed which shows you what it looks like out of focus. This is a significant improvement at a trivial expense compared to the cost of the instrument.
This final image shows the same portion of the PCB as above only with the current flow having just been removed. You can see clearly the temperature gradient as we get further from the MOSFET. Neato!

Special thanks to Mike for the inspiration to do this hack.

A Portable Storage System for Dead Tree Information Storage (Bookcase)


I (Ben Bradley) have made several of these for my personal use. My early bookcases were three feet wide, but moving was a process of putting books into boxes, moving the shelving and the boxes, and putting the books back on the shelves. It was unknown whether the bookcase would hold together if tilted while fully loaded, because it was too heavy to pick up when fully loaded

This one was assembled at Freeside after the November 5 Open House and is based on my current design, as follows:

Components used (available at any Home Depot or Lowes):
(4) 1" x 8" x 6 ft pine board (actual measurements 3/4" x 7 1/4")
(1) 4 ft by 8 ft. x 1/4" plywood board.
(48) 2" long wood or drywall screws, coarse thread preferred (about half of a 1 lb box)
(30) 1" long wood or drywall screws, coarse thread preferred (about a tenth of a 1 lb box)


Tools used:
Chop saw, table or circular saw, hand sander, electric drill/electric screwdriver (two preferred, one for drilling and one for screwing), 1/8" or 5/32" drillbit, clamp that opens to 19"

Assembly:

Compare the lengths of the 6-foot boards. They can differ by 1/4 inch or more. Choose the two longest for the sides. If their lengths are different, cut the longer one to match the shorter one.

Cut the two remaining ones into eight equal-length pieces. The length of 17 3/4 works well as it gives enough space for the saw kerf and a little extra for variations in length.

Sand one side of each of these (this will be the top side where books rest on it), and on one long edge, sand a "curve" along the edge so it is rounded off. Alternately, use a roundover bit in a router to round this edge.

Put the side edge of the first or "bottom" shelf piece against the side of one of the side pieces at one end. A clamp may help here. The rounded edge should NOT be next to the bottom of the side.

The diameter of the hole drilled for screws depends on the screw size used. Older projects used #6 drywall screws, where a 1/8" drill bit work well, but the Home Depot used for parts for this project only had #6 (slightly larger) screws, and a 5/32" bit was used successfully.

Drill a hole about one inch from the front or back edge so that it goes through the side and into the shelf piece equidistant from the top and bottom (for a 3/4" shelf this will be 3/8" from the edge, but I always eyeball it as the center - it's good enough), and into the wood about as far as the screw will go, or perhaps 1/4" less than the screw (set the drikk into the chuck to extend this distance). Be sure to drill straight, so the hole is parallel to the shelf and the screw won't come through.

Screw the screw in, using a drywall screw setter bit. This is a Phillips bit with a metal ring around it that will cause the bit to slip out of the screw once it is just below flush with the wood. This gives excellent strength and prevents accidentally screwing the screw too far into the side, which is easily done with an electric drill/screwdriver.

Drill a second hole the same one inch distance from the other side and put a screw in it. Drill a third hole midway between the other two and put a screw in it. I do it in this order as it's easier to eyeball the middle of the board near the edge, and then it's easier to make the hole in the middle midway between the other two that are already drilled.

Drill the other side of the shelf to the other side piece as above, so that the two side pieces are parallel.

Make two "spacer" pieces of wood using scrap (such as a length of 1" x 8" or smaller), exactly 9 3/4" long. This will be the distance between shelves, and determines the height of the books that will fit between the shelves. Be sure the top and bottom edges of these pieces are parallel, as this is needed for the shelves to all be horizontal.

Put the two spacer pieces along the side pieces and touching the bottom shelf, and place a second shelf between the sides so it touches the other ends of the spacers. This gives a precision height to the shelf without measuring. Make sure the rounded over edge of the shelf is on the same side as the rounded over edge of the bottom shelf. Drill holes and use screws to attach this shelf. Pull out the spacer pieces. They may be moderately tight, but can usually be removed by hand.

Continue attaching shelves in this way until you get to the top shelf. Align the top of the top shelf with the tops of the side pieces, and drill and screw it.

Cut the 4' x 8' by 1/4" plywood to the dimensions of the back of the bookcase, which should be about 19 1/4" x 6 feet. Align it with the back (the side opposite the rounded over shelf edges), and attach it using 1" screws spaced about every six inches.

This bookcase is for Octavo sized books, and the top shelf is just large enough for mass-market paperback books. I've made a similar shelf that fits (almost?) all Quarto sized books and magazines with 1" x 10" boards cut about 14" wide (five shelves per 6-foot plank, seven shelves per bookcase) and with 11 3/4" spacing between the shelves.

These bookcases may weigh 200 lbs fully loaded, but can be moved by one person with a handtruck. Push on the side until the bottom lifts up, put down on the handtruck, then pull back with one foot on the handtruck axle, and move while balanced as shown in the photograph. It can lay down in a pickup truck bed, or stand up in a tall enclosed truck with it tied to the walls.

How we built the Infinity Portal





Some of you may have seen our most recent monster creation at Alchemy or Atlanta Mini Maker Faire - The Infinity Portal.

The Infinity Portal is a 10 foot tall archway with a 7 x 4 ft infinity mirror inside of it. The mirror is made with two-way acrylic, so you can push on it to warp the effect for people on either side of it. It is lit with addressable LEDs, so there is a counter-rotating rainbow vortex in there too. You may remember seeing our write-up about prototyping the design a few months ago.

Defying all expectations, the thing actually survived both events that we brought it to! So we're really happy with it and will find a place to keep it in the mean time.

We actually (surprisingly) did a pretty good job of documenting this build, so we cut it together into a video to show how we built this huge, epic piece of art. Enjoy!


This Week at Freeside

Again with the weekly (more or less...) list of delectable offerings by Freeside, your friendly local dragon and hamster breeder.

Sunday, 10/20: Freeside Laser: Basic Usage and Safety at 2pm
Learn how to use Freeside's new Laser Engraver/Cutter (wiki page). You'll learn how to use the software toolchains to cut or engrave vector and bitmap artwork into a variety of materials. And after the class, you'll be eligible to schedule a one-on-one session an approved user to supervise and assist with your first project, and thereby gain authorization to use the laser unsupervised. That's right. Just you and the laser. $40/person. Pay on Meetup.

Tuesday, 10/22: Chump Car Build at 7pm
Ever wanted to race a car, build a moving art project, or learn to work on a car? Here is your chance to do one or all three! Please join us at Freeside to learn more! And it's totally free, man.

And simultaneously...

Tuesday, 10/22: Open House at 7:30pm
Where the house is open, and the tours are free. If this is your first time to visit Freeside, or you want to hang out with the members, here's your best chance. Happens every week, but you want to go this week, I promise. Free, so long as you are more than 50% organic, original human material.

Wednesday, 10/23 and Thursday, 10/24: 
Introduction to Electricity, Magnetism, and Energy at 7:30pm
In this class you will learn the terminology of electricity, magnetism and energy. You will learn some of the history behind the works and discoveries of Einstein, Maxwell, Tesla, Faraday and many other experimenters and theorists from the past to the present. We will not avoid discussing controversial aspects of the differences in the views of these larger-than-life individuals. Two nights only! (Attend one or both nights!) $20/person. Pay on Meetup.

As always, check out the Meetup for more info, and to RSVP to classes and stuff. And don't forget to take a snapshot and email it to me!

May the rest of your Octuber be spudtaculous.

Trading Post: Milling Edition

Step right up, ladies and gents!  Never seen such fine taxidermy before?  The best in all the land!

I see a lot of disappointed faces - you there, reading the article!  You some kind of Internet-dwelling, city slicker?  Oh, you are.  Very well then - that's totally not a problem!  What's that you say?  What's going on?!

Welcome to the Trading Post - tales from the wild and unsane world of hackerspace skills trading.

One of the key benefits to being part of a community of skilled people with diverse backgrounds is that you're surrounded by opportunities to try something new and learn from each other.

Whether you're into taxidermy, python, arduinos, or rebuilding arcade machines, you can leverage your skill set to learn new skills from other hackerspace members.  If you successfully find a match, then that's what we at Freeside call The Gift of the Magi moment.  Cherish it.

This week, I promised Paul I'd get his website hosted and up and running with Wordpress.  In exchange, he'd let me take his Introduction to Milling class for free.

My project was simple: machine a new set of jaws for Freeside's bench vice.

The first step in the process is measure, measure, and measure again.  It was little later reflecting on all this that I realized all that talk in middle school about proper measurement and significant figures.  We spent a good hour on the measurements themselves.  After some quick instruction with calipers, and how to draw the plans for the part, I went through and filled in all the measurements, twice - then Paul re-measured, and we were good to go.

Freeside has a vertical mill on loanation from Paul.  It's a pretty awesome machine - it wasn't until I actually got hands-on experience with it that I got some serious appreciation for how versatile it is.  The first thing I learned how to do was to aligning the machine vice.  A dial indicator was traversed across a machine square, and put the vice in alignment.  So, in a sense, more measuring.  Accuracy is king - Paul told me we could machine at a thickness less than a human hair.  This is more than enough for our bench vice jaws!

The milling itself is a straight-forward process, once you understand how the measurement on each axis corresponds to the measurements on the part's plans.  At some point, we had to make some spindle speed adjustments by changing the belts.

After all the milling was done, we drilled out the screw holes, and used another bit to taper them.  The final step is to use a file to smooth out each edge of the machined part.

The end product is that there to the right.  Shiny!

Although I ran out of the time we had agreed on to finish the pipe jaws together, Paul added those in later.  Now, we just need one more to complete the set!

We had a small scare trying it out on the bench vice, when the screw holes didn't line up properly.  It just ended up being a matter of not having them wide enough, so crisis averted!

Besides making something useful for Freeside, I really got a serious appreciation for all the time and skill that goes into manufacturing.  There's some interesting problem solving that I wasn't used to, especially when you're faced with the constraint of one mistake completely messing up the part.

Atlanta Mini Maker Faire - Learn to Solder - Call for Volunteers

It's about time for Atlanta Mini Maker Faire 2013 (10/26). LearnToSolder.org and Freeside Atlanta are once again hosting a free Learn to Solder tent. Last year's tent was a huge success, teaching around 100 kids (aged 4 to 80) how to solder together a basic electronic kit. This year, we hope to double that number, but we need help!

We've got all the supplies, irons, solder, project kits, helping hands, band aids and burn gel. What we need are volunteers to supervise and mentor the kids in constructing the kits. These kits are simple, and designed for first timers, but gives them something they can be proud of and show off. You're there to help troubleshoot (solder bridges, cold joints), teach (show them how to do the first joint), and supervise (make sure they know which end of the iron is the hot one), etc.

Sign up for a shift (as many as you want!) today!
https://docs.google.com/spreadsheet/ccc?key=0Ah20TrVBysxUdGVKSHd5a0VDV183UEJWamhSX1ZVNlE&usp=sharing

Information about the AMMF: http://makerfaireatl.com/

This years Learn to Solder kit: http://www.makershed.com/Learn_to_Solder_Skill_Badge_Kit_p/mkls01.htm

This Week at Freeside

Hello to all. I hope you're having a fabulous week, made even more tantalizing with the following offerings from Freeside for your enjoyment and edification.

Sunday, 10/6 Liberated Tech Pre-Build and Build at 1pm
Tuesday, 10/8 Chump Car Build at 7pm and Open House at 7:30
Wednesday, 10/9 TED Talks and Discussion Night at 7pm
Thursday, 10/10 CryptoParty at 8pm
Saturday, 10/12 Bicycle Repair 1 at 3pm and Freeside Build Day (and potluck) all afternoon.

And if when you head over to one or more of these events, go ahead and take pictures, share ideas, dig yourself eye-ball deep, and make the space a part of yourself, just as you are a part if it.

Have ideas for classes or events at the space? Get in touch! The only limit is yourself.

-Kendra

An End to a Legacy: Painting Over the Mural

Great numbers turned out to fight the good fight on Thursday. Together we faced the mural and, each in our own hearts, said words over the icon that had been the auditorium mural. I had hated the mural, but in spreading the first layer of grey-green over the inaccurately spray-painted earth, I realized that I did not hate it, but loved it, in its passing, as a metaphor, a cautionary tale. It represents what happens when art and science are separated. Like a guitar tuned to .05 Hz below standard. Like a sculpture slowly collapsing from lack of structural support. The moon, so obstinately shining on the far side of the sun, was a reminder that only together can artists and engineers accomplish beautiful and functional things.

We should all take care to remember that, as we move forward into a brave new age that contains 3D-printers, makerspaces, and DIY culture. Engineers, do not sneer at the BA's of the world. Artists, do not abstain from telling technical types that their designs are fugly (very nicely, of course). And you creatures who have a foot in both lands, do not reject one side of yourself. Only together can we prevent the Bad Astronomy Mural from happening again. Only together can we see the sun's own light shine on the correct side of the moon.

A metaphor for art without science

A metaphor for rising above, on very sturdy ladders.

Helping Rachel from Liberated Tech take apart things for the art party while paint dried.

A blank canvas, a metaphor for what we made, itself a metaphor. It is an infinity mirror of metaphors, if you will humor me, and even if you won't.