Skip to main content

Build-Out Recap!

A bunch of great stuff got done at the build-out yesterday. A huge thanks to everyone that came out to pitch in!

Here are some pictures to recap the projects... Randy's team hung the curtain to the workshop to create more of a barrier between the front of the house and back of the house and to control dust levels a bit more. We'll be finishing the top of the wall soon, but the hard part's already done. Karen, Donald, Tom, Violet, and James framed the doorway to the Media Lab and Bio Lab and hung the door for that area. Next step is AC!


Michelle and Mary's team cleaned out project storage and moved the shelves over so that Neils could put the flammability cabinets in that area. That allowed all of us with the help of Adam and Nathan to clean up the workshop and really tidy up. They also sorted out all of the laser cutter raw materials and cut them down to a usable size on the table saw. 






For the portal clouds, JW, Nathan, and Kat rolled an awesome $1 solution for controlling the WS2812 clouds with an attiny and a programming header. The schematics and board layout are included too. We used highlowtech's guide to programming the Attiny85s with the help of an instructables for driving LEDs with them that provided some supplemental information. There was an issue with setting the fuse in the ATTiny to get the timing right that we ended up having to use avrdude to change manually. Maybe that had something to do with us using the internal clock or the ATTiny-10... Anyway, more clouds coming soon :)






Thanks again to everyone who came and I'm looking forward to the next one!

Comments

Popular posts from this blog

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and

Freesiders Hackers Collaborate in Medical / Surgical Research

Published in the May issue of the Journal of Foot and Ankle Surgery : " A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction ." This collaboration of specialties represents an undertaking by members of Freeside Atlanta , Southern Arizona Limb Salvage Alliance , and The Podiatry Institute .  Charcot foot reconstruction remains on of the most challenging procedures in foot and ankle surgery.  These procedures are often lengthy procedures which can be riddled with complications. With the help of Freeside Atlanta Members, institutional researchers used open source Osirix Image viewer and 3D Software such as Newtek's Lightwave or Blender to create simulated surgical reductions as well as 3D printed templates.  Freeside Atlanta members assisted in providing 3D printing solutions and know-how to the project. Experimental test prints were done on a M

Onboard Firmware of the Human Brain

Freesiders are continually tinkering with robotics and other such machinery .  Many of these embedded processors and firmware are becoming open source and every-more diversified in the wake of the modern Maker movement . One notable boost to the hackerspace arsenal is the Arduino (an like platforms).  This offers designers an incredible power to devise not just individual devices but even the emergence of complex, integrated systems . This evolutionary pace of modern technological systems may be significantly faster the biologic system development, but there may be a few well learned tricks yet to be mastered.  It seems that studying how nature has managed to solve many development challenges will aid in designing robotics, where efficiently counts just as much. One  challenge, that is particularly interesting, is data processing.  Artificial intelligence is labored with processing data and producing a meaningful and useful output.  When considering the increase in sensory