Skip to main content

Bench power supply project

I found myself needing a 480W power supply to test a high current project I was working on. A 500W bench/lab power supply will set you back $100s so I figured a PC power supply was the cheapest bet. For $80 you can get a Wonhunglow brand. I checked ebay and found Dell 500W server power supplies CHEAP. Like $2 cheap.

I acquired a couple and figured out how to turn the thing on by shorting 3 pins together. Then I designed a simple little 4 rail power supply PCB and had it built by OSH Park. This power supply outputs 12V and 5V and 4V. I didn't have any use for the 4V so I skipped those pins but did add a 500mA 3.3V LDO to my board so I have 3.3V, 5V, 12V, and GND rails available. I left a large section of the solder mask missing so I could solder on some more current carrying capacity and called it done. I used a DPDT switch to short out the 3 pins required to turn on the 12V rail and added a little LED to indicate that the 3.3V regulator was running and put a small current limiting resistor on the LED so that the regulator is stabilized (I didn't check the datasheet too closely but it is common for an LDO to behave strangely until it has a minimum load). One minor complicating factor was the unusual connector on this hot swappable power supply. It had a part number on it though and I was able to get Molex to send me a couple mating adapters.

I will redesign this with a fully adjustable constant voltage and constant current output in the the future. That will be a bit of a project because 500W is a lot of power to bleed off and I want it to be accurate so I plan to use 12bit DACs and ADCs. I've been looking around for them and they are expensive enough that I think I will just use a ARM Cortex 3 microcontroller with on board 12 bit converters. More on that on some future post.

Here it is.
The business end.
Plugged into the Power Supply
Side view of the Power Supply with PCB attached
The back side featuring the LDO and Molex connector.

Comments

Popular posts from this blog

Building an enclosure for the LulzBot AO 100

As the cold weather season arrives in Atlanta, with it comes issues with our 3D printers. Specifically problems with temperatures and print stability. Freeside is essentially a big warehouse, and our 3D printing station is setup in the large open area in the front of the space. What this means is that when it is cold in the space, this will affect the printing quality because the ambient temperature is far lower than what is optimal for thermoplastics. The cold ambient air will cause parts to rapidly cool during the middle of a print. And with materials like ABS which can shrink dramatically during cooling, this causes prints to warp, deform, and delaminate during and after printing is finished. The print on the left is showing signs of delamination from plastic cooling mid print. To remedy this, we built an acrylic enclosure for our LulzBot AO-100, which is our dedicated ABS printer. We tested the proof of concept of whether an enclosure would help mitigate printing problem

Build-Out Recap!

A bunch of great stuff got done at the build-out yesterday. A huge thanks to everyone that came out to pitch in! Here are some pictures to recap the projects... Randy's team hung the curtain to the workshop to create more of a barrier between the front of the house and back of the house and to control dust levels a bit more. We'll be finishing the top of the wall soon, but the hard part's already done. Karen, Donald, Tom, Violet, and James framed the doorway to the Media Lab and Bio Lab and hung the door for that area. Next step is AC! Michelle and Mary's team cleaned out project storage and moved the shelves over so that Neils could put the flammability cabinets in that area. That allowed all of us with the help of Adam and Nathan to clean up the workshop and really tidy up. They also sorted out all of the laser cutter raw materials and cut them down to a usable size on the table saw.  For the portal clouds, JW, Nathan, and Kat rolled an aw

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and