Skip to main content

Building Shelves

It is becoming increasingly evident that one component of a successful hacker space is good storage. The problem is that most shelf systems out there are pretty expensive. After a recent meeting we started brain storming different shelf designs and finally settled on one. Convinced that we could save money by building our own shelves we set out to the local hardware store with a materials list. After rounding up all the needed materials and renting a truck we headed back to Freeside.

We quickly refined a procedure and started building our shelves. We were only able to complete the first four sections of shelves by the end of the day, but we were very proud of our work and we still have enough material to make 8 more shelf units. Many thanks to everyone who helped build shelves and I hope you are able to make it to the next work day!

Here is an album of the build and some pictures of the completed shelves:

Comments

  1. You have gleaned great wisdom. Storage, and clearing out storage (with its attendant purging rituals: the sorting, the finding crap you lost, the losing the hard-to-part-with unnecessaries, and the liking of the now-roomier storage), are success factors. Congratulations on building shelves, and a wave from Forskningsavdelningen in Malmö, Sweden.

    ReplyDelete

Post a Comment

Popular posts from this blog

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and

Onboard Firmware of the Human Brain

Freesiders are continually tinkering with robotics and other such machinery .  Many of these embedded processors and firmware are becoming open source and every-more diversified in the wake of the modern Maker movement . One notable boost to the hackerspace arsenal is the Arduino (an like platforms).  This offers designers an incredible power to devise not just individual devices but even the emergence of complex, integrated systems . This evolutionary pace of modern technological systems may be significantly faster the biologic system development, but there may be a few well learned tricks yet to be mastered.  It seems that studying how nature has managed to solve many development challenges will aid in designing robotics, where efficiently counts just as much. One  challenge, that is particularly interesting, is data processing.  Artificial intelligence is labored with processing data and producing a meaningful and useful output.  When considering the increase in sensory

Freesiders Hackers Collaborate in Medical / Surgical Research

Published in the May issue of the Journal of Foot and Ankle Surgery : " A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction ." This collaboration of specialties represents an undertaking by members of Freeside Atlanta , Southern Arizona Limb Salvage Alliance , and The Podiatry Institute .  Charcot foot reconstruction remains on of the most challenging procedures in foot and ankle surgery.  These procedures are often lengthy procedures which can be riddled with complications. With the help of Freeside Atlanta Members, institutional researchers used open source Osirix Image viewer and 3D Software such as Newtek's Lightwave or Blender to create simulated surgical reductions as well as 3D printed templates.  Freeside Atlanta members assisted in providing 3D printing solutions and know-how to the project. Experimental test prints were done on a M