Skip to main content

Lathon 3D Printer

Everyone seems to either want, have or use a 3D printer now a days. I bought my first printer kit in 2012 and I quickly noticed I wanted a one with more capabilities but since all of the high performance models were so expensive I designed my own. Eventually I designed a $4,000 printer that I could sell for $1,400 on KICKSTARTER.



There were a few things that I wanted the printer to have: two nozzles, Bowden extrusion, enclosed build area, and a moving xy gantry. 


The two nozzles seems like an obvious choice for anyone who has printed before simply because it allows you to create way more interesting prints than you could otherwise. For example dissolvable support, multiple colors and multiple materials (which is pretty cool). I did notice on other dual nozzle printers, however, that having two big stepper motors created a massive moving mass so if I wanted any sort of respectable speed I was going to have to go Bowden style.




Another pet peeve I have is a moving y-axis. There are big debates on the RepRap IRC and even in the forums about what is better for the print, a moving Y or Z. I will stand firm on the fact that moving your print rapidly back and forth is a ridiculous idea. It definitely looks cool and makes life easier in some regards, but having a variable moving mass that is semi-molten does not seem like a good idea…

Now that I knew what I wanted to do, I starting creating a CAD model of the overall design of the printer. This wasn't too difficult just time consuming. I used V-Slot for my frame and thankfully they have Sketchup models that anyone can download so it gave me a good starting point. 

 Once I started building the frame it became quickly apparent that extrusions require some effort to get them in tight tolerances for a square frame. This was the process that was recommended by Paul F.

How To Cut 80/20 Extrusions (within 0.002”):

1.      Cut the rough dimension with a band saw
2.      Make square first cut on each side using the mill
3.      Bolt an endstop for the extrusion at the required length to the mill
4.      Cut the first piece. Now that you have an endstop at the length of your first piece all of the subsequent pieces should be the exact (or close) length
5.      Take your second piece make a first pass then flip it butt it up against the endstop and then cut the excess with the mill.

Super square frame on a flat sheet of glass



With my frame done the next step was to create the x and y axis. This was a little bit difficult because I did not just want to copy existing printers. I don’t particularly like the Ultimaker’s X/Y set up even though it does produce great results. I wanted to be a little more creative so I decided I was going to use my frame as the rails for my Y axis. Since I had V-slot already I decided to use it for my X-axis. The details were a little weird to work out, but I think it turned out nicely.
 Building the Z-axis was a little bit more difficult because the print bed was so large and I was concerned about the print bed bending as a cantilever beam. I eventually settled on a design using a tri-point mounting system with V-Rails. For the production model, however, I will change the design to something with less flex. For a production model I would focus on making the whole z-axis assembly of only 2 or 3 pieces to minimize play between the interfaces. After using the printer for several months I think a 4 point mounting system is a better choice because with cyclic heating and cooling the print bed appears to sag in the corners where it isn't supported.
Laser engraved logo on the side wall. Fun Fact: all the radii in
 this design are different ratios to pi
 With the basic mechanics completed it was time to add the print bed, nozzles and enclose the printer. The print bed you will notice is actually white plastic and not glass. This plastic is a plastic from GE called Ultem 2300 and I thank the delta printer google groups because they were definitely helpful in brainstorming ideas for a new print surface. Unfortunately nobody really sells this plastic in small sizes so in small quantities it is really expensive. However, it is an amazing print surface so far I can say that it is great for printing PLA, ABS, HIPS, Carbon Fiber, NinjaFlex and LayWood filament. Nylon really should be printed on Garolite simply because it is impossible to remove from Ultem (I may have destroyed a couple prints proving this).


Enclosing the printer was actually pretty interesting because I got to work with a laser cutter. I laser cut most of the parts based off of my CAD but I ran into trouble when making the top cover. The Bowden tube requires a large amount of room so that it doesn’t break the filament or create too much friction so I need a tall top cover. Initially I made a square box which was pretty ugly, so I figured it needed to round the edges. My first attempt was to learn how to bend acrylic and that didn’t turn out so well….
I spent a day trying to get the acrylic to bend at a 90 degree with a 4” radius. Unfortunately I failed pretty hard but that is what Makerspaces are for, failing and learning!

I did some digging and figured that the best way would be to make the bend out of acrylic a laser cut living hinge and I think it turned out pretty well.


The last part and probably the most interesting was the extruder. I needed an extruder that fit the E3D DMfit connectors and I really wanted it to only have one bolt for ease of use. Actually, the first one I made was very similar to the makerbot extruder, without a tensioning screw, but because I am printing in so many different materials it didn’t work since each material needs a different amount of idler tension. It took around 4 different prototypes until I finally created a mechanism that works.
Overall I think the printer turnout splendidly and it makes some really great prints too. Check out the time lapse of a massive D20 below. There are also many example prints on www.lathon.net and the kickstarter . I really enjoyed this project and I hope I can make LATHON’s for other Makers and engineers because, for us, a 3D printer is just as important as a hammer.





Comments

Post a Comment

Popular posts from this blog

A Capacitive-Touch Janko Keyboard: What I Did at the 2017 Georgia Tech Moog Hackathon

Last weekend (February 10-12, 2017) I made a Janko-layout capacitive-touch keyboard for the Moog Werkstatt at the Georgia Tech Moog Hackathon. The day after (Monday the 13th), I made this short video of the keyboard being played: "Capacitive Touch Janko Keyboard for Moog Werkstatt" (Text from the video doobly doo) This is a Janko-layout touch keyboard I made at the 2017 Moog Hackathon at Georgia Tech, February 10-12. I'm playing a few classic bass and melody lines from popular and classic tunes. I only have one octave (13 notes) connected so far. The capacitive touch sensors use MPR121 capacitive-touch chips, on breakout boards from Adafruit (Moog Hackathon sponsor Sparkfun makes a similar board for the same chip). The example code from Adafruit was modified to read four boards (using the Adafruit library and making four sensor objects and initializing each to one of the four I2C addresses is remarkably easy for anyone with moderate familiarity with C++), and

Freesiders Hackers Collaborate in Medical / Surgical Research

Published in the May issue of the Journal of Foot and Ankle Surgery : " A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction ." This collaboration of specialties represents an undertaking by members of Freeside Atlanta , Southern Arizona Limb Salvage Alliance , and The Podiatry Institute .  Charcot foot reconstruction remains on of the most challenging procedures in foot and ankle surgery.  These procedures are often lengthy procedures which can be riddled with complications. With the help of Freeside Atlanta Members, institutional researchers used open source Osirix Image viewer and 3D Software such as Newtek's Lightwave or Blender to create simulated surgical reductions as well as 3D printed templates.  Freeside Atlanta members assisted in providing 3D printing solutions and know-how to the project. Experimental test prints were done on a M

Onboard Firmware of the Human Brain

Freesiders are continually tinkering with robotics and other such machinery .  Many of these embedded processors and firmware are becoming open source and every-more diversified in the wake of the modern Maker movement . One notable boost to the hackerspace arsenal is the Arduino (an like platforms).  This offers designers an incredible power to devise not just individual devices but even the emergence of complex, integrated systems . This evolutionary pace of modern technological systems may be significantly faster the biologic system development, but there may be a few well learned tricks yet to be mastered.  It seems that studying how nature has managed to solve many development challenges will aid in designing robotics, where efficiently counts just as much. One  challenge, that is particularly interesting, is data processing.  Artificial intelligence is labored with processing data and producing a meaningful and useful output.  When considering the increase in sensory